Walkthrough different types of Headphones

Headphones come in various types, each designed to cater to different preferences, usage scenarios, and audio requirements. Understanding the differences between these types can help users choose the best option for their needs.

  1. Over-Ear Headphones: Also known as circumaural headphones, these have large ear cups that completely enclose the ears. They typically offer excellent sound quality, noise isolation, and comfort for extended listening sessions. Over-ear headphones come in open-back and closed-back designs, with open-back providing a more natural soundstage but less isolation from external noise.
  2. On-Ear Headphones: On-ear headphones, or supra-aural headphones, have smaller ear cups that rest on the ears rather than enclosing them. They are more compact and portable than over-ear headphones but may be less comfortable for extended wear. On-ear headphones provide a balance between sound quality, portability, and isolation.
  3. In-Ear Headphones: Also known as earbuds or in-ear monitors (IEMs), these headphones fit directly into the ear canal. They are lightweight, portable, and offer decent sound isolation. In-ear headphones are popular for use during exercise or travel due to their small size and secure fit.
  4. Earbuds: Earbuds are similar to in-ear headphones but sit outside the ear canal rather than inside it. They are often included with smartphones and portable media players but may sacrifice sound quality and isolation compared to in-ear headphones.
  5. Wireless Headphones: These headphones use Bluetooth technology to connect to audio sources wirelessly. They offer the convenience of freedom from cables but may experience latency issues and require regular charging.
  6. Noise-Canceling Headphones: These headphones use active noise-canceling technology to reduce external noise, providing a quieter listening environment. They are ideal for use in noisy environments like airplanes or busy streets.

Surround Microphonation

Surround microphonation, also known as surround sound recording or multichannel microphone techniques, is a method of capturing audio that aims to replicate the spatial realism of human hearing by using multiple microphones strategically placed around a sound source or environment. Unlike traditional stereo recording, which typically employs two microphones to create a sense of left and right positioning, surround microphonation utilizes three or more microphones to capture sound from all directions, including front, back, sides, and above.The primary goal of surround microphonation is to immerse listeners in a lifelike audio experience that closely mirrors the way humans perceive sound in real-world environments. By capturing sound from multiple directions, surround recordings can convey a sense of depth, dimensionality, and spatial placement, enhancing the realism and immersion of the listening experience.There are several techniques and microphone configurations used in surround microphonation, each offering unique advantages and characteristics. Common setups include the use of omnidirectional, cardioid, or shotgun microphones arranged in arrays or distributed around a recording space. Ambisonic microphones, which capture sound in full 360-degree spatial audio, are also popular for surround recording applications.

In post-production, surround recordings are typically mixed and processed using specialized software and hardware to create a cohesive and immersive audio mix. By manipulating the levels, panning, and processing of individual microphone channels, audio engineers can recreate the spatial characteristics of the original recording environment and tailor the listening experience to different playback systems, such as stereo, 5.1 surround, or immersive audio formats like Dolby Atmos and DTS:X. Surround microphonation finds applications in various fields, including music production, film and television sound, live concert recording, virtual reality, gaming, and immersive audio installations. As technology continues to evolve, surround recording techniques are becoming increasingly sophisticated, enabling even greater levels of realism and immersion in audio production.

Granular Synthesis

Granular synthesis is a groundbreaking technique in sound synthesis that operates on the principle of breaking down audio into tiny, individual grains and manipulating them to create entirely new sounds. Unlike traditional synthesis methods that generate sound through oscillators or samples, granular synthesis focuses on the microscopic level, treating sound as a series of tiny sonic particles.

At its core, granular synthesis involves dividing a sound wave into small, typically millisecond-sized segments called grains. Each grain contains a snippet of the original sound, ranging from a fraction of a second to several milliseconds. These grains are then manipulated in various ways, such as altering their pitch, duration, amplitude, and spatial positioning, to create complex and evolving textures and timbres. One of the key advantages of granular synthesis is its ability to transform ordinary sounds into rich, otherworldly textures. By manipulating parameters like grain density, grain size, and grain overlap, sound designers can achieve a wide range of effects, from shimmering clouds of sound to rhythmic patterns and everything in between. Granular synthesis also lends itself well to real-time manipulation and performance. With modern software and hardware synthesizers, musicians and sound designers can interactively control granular synthesis parameters using MIDI controllers, touchscreens, or other input devices, allowing for expressive and dynamic sonic exploration.

Applications of granular synthesis span a wide range of fields, including electronic music production, film scoring, sound design for video games, and experimental audio art. Its ability to generate intricate textures and evolving soundscapes has made it a valuable tool for pushing the boundaries of sonic creativity and expression. As technology continues to advance, granular synthesis promises to play an increasingly important role in shaping the future of sound.

Das neue Konzept

Das neue Ziel ist eine interaktive Klangistallation, bei der der dichte Klang von Becken und Gongs genutzt werden soll um ein Immersives Klangerlebnis zu erhalten. Die Instrumente sollen dabei nicht primär durch direktes Spielen angeregt werden.

Ziel ist, dass sich ein Besucher in einem Raum zwischen den Becken bewegt, diese auf ihn reagieren und ihn mit Klang umhüllen.

Eine Möglichkeit der Anregung wäre es, einen Kontaktlautsprecher/Exciter am Becken zu befestigen. Erste Versuche damit wurden bereits gestartet:

Dabei wurde der KJontaktlautsprecher (20W) von einem kleinen HiFi Verstärker betrieben und man konnte Klänge wiedergeben. Der Filtereffekt des Beckens fällt weniger stark aus als erwartet, man bekommt ein recht Breitbandiges Signal. Das liegt eventuell an der geringen Größe im Vergleich zu z.B. einem Tamtam. Die Veränderung der Position des Exciters und der Anregung unterschiedlicher Moden fällt ebenfalls relativ gering aus. Man erhält durch das Becken einen metallischen Nachklang/Hall.

Weitere Anregungsmöglichkeiten wären u. A. Schlägel, Geigenbögen oder Solinoiden. Letztere wurden zum Beispiel von W. Ritsch bei deinem Projekt Klangplatten (1999) verwendet, eventuell um der Dämpfung der Platten durch die aufliegenden Exciter zu umgehen.

Ein Neuanfang

Da die Hürden einer App Programmierung für mich zu hoch sind und der Fokus und das eigentliche Ziel der im Wintersemester entwickelten Ideen im Prozess verloren gingen, habe ich mich darauf konzentriert, eine neue Idee zu entwickeln.

Im Jahr 1964 wurde in Brüssel Karlheinz Stockhausens Stück Mikrophonie I uraufgeführt. Es wurde für Tamtam (ein Gong mit Ursprung in Ostasien), 2 Mikrophone, 2 Filter und Controller komponiert. Im Stück wird ein Tamtam mit verschiedenen Gegenständen angeregt und mit den Mikrophonen abgenommen und bearbeitet. Zur Realisation benötigt es mehrere Performer.

Zu hören ist das Stück z. B. hier: https://www.youtube.com/watch?v=EhXU7wQCU0Y

Der japanische Klangkünstler Ryōji Ikeda komponierte diverse Stücke für Becken, zum Beispiel das 2016 erschienene Metal Music III. In diesem werden mehrere Becken von 4 Percussionisten gespielt. Durch Interferenzen zwischen den Becken und verschiedene Spieltechniken entsteht ein immersives, dichtes Klangerlebnis.

Zu hören ist das Stück z. B. hier: https://www.youtube.com/watch?v=Qhx0yAL8U4w&t=487s

Da ich die beschriebenen Stücke sehr interessant finde, soll für das kommende Projekt daraufaufgebaut werden.

Intonation of classical Instruments

The intonation of classical instruments is a crucial aspect of musical performance, shaping the overall sound and expression of a piece. Intonation refers to the accuracy of pitch produced by an instrument or vocalist. In classical music, achieving precise intonation is essential for creating harmonious melodies and cohesive ensemble playing. Each classical instrument has its unique challenges and techniques for achieving optimal intonation. String instruments, such as the violin, viola, cello, and double bass, require musicians to place their fingers precisely on the fingerboard to produce the desired pitch. Factors such as finger placement, finger pressure, and bowing technique all influence the intonation of string instruments. Violinists, for example, often use subtle adjustments in finger pressure and bow speed to maintain accurate intonation throughout a performance.

Wind instruments, including the flute, clarinet, oboe, bassoon, trumpet, French horn, and trombone, also require careful attention to intonation. Unlike string instruments, wind instruments rely on the manipulation of airflow and embouchure to control pitch. Musicians must develop a keen ear and adjust their breath support and embouchure position to achieve precise intonation across different registers and dynamic levels. Additionally, factors such as temperature, humidity, and instrument maintenance can affect the intonation of wind instruments. In the realm of orchestral playing, achieving uniform intonation among different sections is essential for creating a cohesive and balanced sound. Orchestral musicians rely on their ears and communication with their colleagues to adjust their intonation in real-time, especially when playing in harmony or unison. Intonation in classical music is not merely about playing in tune but also about conveying emotion and expression. Musicians strive to achieve expressive intonation by subtly bending pitches and inflecting notes to convey the intended mood and character of a musical phrase.

In conclusion, the intonation of classical instruments plays a fundamental role in shaping the beauty and expressiveness of classical music performances. By mastering the technical aspects of intonation and embracing its expressive potential, musicians bring life and depth to the music they perform.

References:

  1. Chappell, B. (2019). Brass Intonation: A Guide to Intonation Basics for Brass Players. OUP Oxford.
  2. Dick, J. (2018). Playing the Oboe: A Step-by-step Guide. Oxford University Press.
  3. Green, B. (2013). The Inner Game of Music. Pan Macmillan.
  4. Schiff, D. (1999). The Violin: A Social History of the World’s Most Versatile Instrument. W. W. Norton & Company.

2. Semester 02 -> Dates/Info und 3D

Stückliste der Solenoidenbaugruppe

06.04.2023

  • Erstellen der Stückliste für Solenoiden
  • Kontaktaufnahme mit Eyb Guitars (eyb-guitars@t-online.de)
    Preisreduzierung des SUSTAIN-PICKUPS (350€ auf 250€ oder weniger)
    Kleinstunternehmen in Deutschland, welches den Pickup anbietet
  • Warten auf Zusage der Bestellung
  • Testen eines Solenoiden (PureData ok)
  • Testen des Touchpads (Bela Thrill) (PureData ok)
  • Testen Distanz-Sensor (PureData ok)

07.04.2023

  • 3D Modell bearbeiten mit FREE-CAD
  • Basic Engineering der Konsole der Solenoide
  • Konzept/Aufbau auf der Gitarre

ANMERKUNGEN:           

Floyd Rose?  – Problem Platzsituation (Qualität der Gitarre ist entscheidend, ansonsten ist das Floyd und die Gitarre unbrauchbar da sie sich permanent verstimmt

  • Lösung Slider/Touchfläche für Pitch Shift

Standardposition, nach Verlassen des Slider/Touchfläche – zurück auf Standardwert

09.04.2023

  • 3D Modell bearbeiten mit FREE-CAD
  • Basic Engineering der Konsole der Solenoide

10.04.2023

  • Kontaktaufnahme mit Eby-Guitars

Zoom-Meeting (Best practices)

Aus diesem Grunde hat sich die Bestellung der Gitarre verschoben, da eventuell die Wahl des Pickups auf einen kleineren Fällt. Es gibt auch einen geeigneten Gitarrenkorpus hierfür, dies würde Fräsarbeiten ersparen was sich positiv auf die Optik der Gitarre auswirkt

MEETING voraussichtlich 13. oder 14. April -> Warten auf Mail

2. Semester 01 -> Sustain/Piano Guitar

Für das 2 Semester ist die Umsetzung des Prototypen auf ein Entwicklerboard vorgesehen. Bevor die Gitarre zusammengebaut wird muss das komplette Konzept getestet werden.

Überblick der Baugruppe für das 2. Semester

  • Gitarre
  • Sustain Tonabnehmer
  • Gitarrentonabnehmer
  • BellaMini
  • Powerbank
  • Treiber
  • Montagekonsole/n

Der Sustain Tonabnehmer wird bestellt. Der Preis des Humbuckers liegt bei 350€ und muss in Amerika bestellt werden. Nach einer umfangreichen Recherche im Internet habe ich ein deutsches Kleinstunternehmen gefunden, welches in regelmäßigen Abständen eine größere Menge dieser Sustain Tonabnehmer bestellt. Nach Absprache mit dem Leiter des Unternerhmens ist es mir nun möglich, mich bei deren Bestellung zu beteiligen und somit bis zu 100€, wenn nicht sogar noch mehr, zu sparen. Laut dem aktuellen Zeiztplan habe ich am 14.04 ein Zoom-Meeting mit dem Leiter des Unternehmens. Da es verschiedene Typen des Tonabnehmers gibt, gilt es den richtigen auszuwählen. Beim ersten Telefonat wurde ich daraugf aufmerksam gemacht, dass es bei diesen Tonabnehmern gelegentlich zu Missverständtnissen kommt. Aus diesem Grund habe ich das Meeting, um eventuelle Missverständtnisse aus dem Werg zu räumen.

Weitere Recherchen betreffend kleinerer Solenoiden war bis dato noch nicht erfolgreich. Sollten jene Solenoiden verwendet werden, welche ich bereits vor Ort habe. So muss die Positionierung an der Gitarre abgeändert und auch der Bautyp der Gitarre neu gewählt werden. Dieses Problem wurde jedoch schon im letzten Semester erkannt und es ist mir möglich, sollte gegebener Fall eintreffen, prtoblemlos mit dem Projekt fortzufahren.

https://www.eyb-guitars.de/

Ambisonic System – Overview


Ambisonic systems represent a revolutionary approach to capturing, processing, and reproducing audio that offers immersive, three-dimensional sound experiences. Developed in the 1970s by Michael Gerzon, Ambisonics aims to create a faithful representation of sound fields, allowing listeners to perceive audio as if they were present in the original recording environment.

At the core of Ambisonic systems is the concept of encoding sound into spherical harmonics, which accurately represent the direction, intensity, and spatial characteristics of audio sources. This encoding captures the full three-dimensional sound field, including height information, making it ideal for immersive audio reproduction in formats such as virtual reality, augmented reality, and 360-degree videos. Ambisonic systems typically consist of a microphone array designed to capture sound from all directions, known as a soundfield microphone. These microphones record the audio scene with precision, preserving spatial cues that are crucial for realistic reproduction. The recorded signals are then encoded into Ambisonic format using mathematical algorithms, such as B-format, which represents sound information in terms of W (omnidirectional), X (front-back), Y (left-right), and Z (up-down) components. During playback, Ambisonic signals can be decoded and rendered through a variety of speaker setups or binaural headphones, recreating the original sound field for listeners. Advanced processing techniques, such as head-tracking and room simulation, further enhance the immersive experience by adapting the audio to the listener’s position and environment. Ambisonic systems are widely used in applications where accurate spatial audio reproduction is essential, including gaming, cinematic VR experiences, live music recording, and spatial audio installations. As technology continues to advance, Ambisonics remains at the forefront of immersive audio innovation, promising even more lifelike and captivating soundscapes in the future.

Underwater music

A contemporary underwater music composer Michel Redolfi, said that: “Music in the water fills the void of the silence. Sound means life and when music is broadcast underwater, it’s a playful life sign. In addition, your sensory system is boosted by the bone conduction listening, which is very energetic and soothing at the same time. Music in the water opens the body and mind.“ [Redolfi]

https://www.youtube.com/watch?v=99kAO-SCxOI&ab_channel=MichelRedolfi

Joel Cahen is the UK-based sound and visual designer who founded the traveling “deep listening” event Wet Sounds. Wet Sounds transforms swimming pools into spaces for music, light and performance experienced by entering the water and moving freely below and above the water surface. In 2008, Joel Cahen introduced a selection of immersive underwater sounds from all around the world for the first performances of Wet Sounds.

“Wet Sounds pieces are archived online. A few are hydrophonic recordings—so that the fact that they were played back under water raises the question of whether these are compound or redundant underwater pieces (and what happens when we listen in air?). “ – anthropologist Stefan Helmreich poses this question in his article “Underwater music: tuning composition to the sounds of science”.

A pioneer of underwater sound experimentation was John Cage, which approach as mixing subjective and scientific methods.

“in his collaboration with Lou Harrison, Double Music (1941), in which Cage specified the use of a “water gong (small—12”–16” diameter—Chinese gong raised or lowered into tub of water during production of tone).” Cage traces his use of the water gong to 1937 at UCLA, where, acting as an accompanist, he sought a solution to the problem of providing musical cues to water ballet swimmers when their heads were under water. (Kahn 1999, 249–50; see also Hines 1994, 90) “

The next one was a Sound installation artist – Max Neuhaus:

“In Water Whistle [1971–1974], water was forced through whistles under water to produce pitched sounds that could be heard by the audience only when they submerged themselves. In Underwater Music [1976–1978], he modified this technique by using specially designed underwater loudspeakers and electronically generated sounds, which were composed through a combination of scientific experiment and intuitive, creative decisions.” (Miller 2002, 26)


Sources:
1. Stefan Helmreich – Underwater music: tuning composition to the sounds of science
2. Stefan Helmreich – An anthropologist underwater: Immersive soundscapes, submarine cyborgs, and transductive ethnography
3. Sonja Roth – An exploration of water in Sound Art